在处理小型数据集上的临床文本分类时,最近的研究证实,经过调整的多层感知器的表现优于其他生成分类器,包括深度学习。为了提高神经网络分类器的性能,可以有效地使用学习表示的功能选择。但是,大多数特征选择方法仅估计变量之间的线性依赖性程度,并根据单变量统计测试选择最佳特征。此外,学习表示所涉及的特征空间的稀疏性被忽略了。目标:因此,我们的目标是通过压缩临床代表性空间来访问一种替代方法来解决稀疏性,在这种情况下,法国临床笔记也可以有效地处理有限的法国临床笔记。方法:本研究提出了一种自动编码器学习算法来利用临床注释表示的稀疏性。动机是通过降低临床音符表示特征空间的维度来确定如何压缩稀疏的高维数据。然后在受过训练和压缩的特征空间中评估分类器的分类性能。结果:建议的方法为每种评估提供了高达3%的总体绩效增长。最后,分类器在检测患者病情时达到了92%的准确性,91%的召回,91%的精度和91%的F1得分。此外,通过应用理论信息瓶颈框架来证明压缩工作机制和自动编码器预测过程。
translated by 谷歌翻译
本文提出的研究目的是通过在楚圣特贾斯汀医院的研究数据仓库中的医生笔记中,基于自然语言处理制定自然语言处理的机器学习算法。首先,使用字词(弓),术语频率逆文档频率(TFIDF)和神经单词嵌入(Word2VEC)采用单词表示学习技术。每个表示技术旨在在关键护理数据中保留语义和句法分析。它有助于丰富单词表示的相互信息,并导致进一步适当的分析步骤的优势。其次,通过从前一步的创建的词表示矢量空间来使用机器学习分类剂来检测心力衰竭或稳定患者的患者条件。该机器学习方法基于监督二进制分类算法,包括Logistic回归(LR),高斯天真贝叶斯(Gaussiannb)和多层的Perceptron神经网络(MLPNN)。从技术上讲,它主要优化培训分类器期间的经验损失。结果,将完成自动学习算法以利用高分类性能,包括精度(ACC),精度(Pre),召回(REC)和F1得分(F1)。结果表明,TFIDF和MLPNN的组合总是表现出与所有整体性能的其他组合。在没有任何特征选择的情况下,所提出的框架分别产生了84%和82%,85%和83%的ACC,Pre,Rec和F1的整体分类性能。值得注意的是,如果特征选择很好,整体性能最终会为每个评估提高4%。
translated by 谷歌翻译
临床数据管理系统和人工智能方法的快速进展使个性化药物的时代能够。重症监护单位(ICU)是这种发展的理想临床研究环境,因为它们收集了许多临床数据,并且是高度计算机化的环境。我们在使用临床自然语言的前瞻性ICU数据库中设计了一种回顾性临床研究,帮助早期诊断严重生病的儿童心力衰竭。该方法包括学习算法的实证实验,以了解法国临床票据数据的隐藏解释和呈现。本研究包括1386名患者的临床票据,符合5444行票据。有1941个阳性案件(总计36%)和3503个使用标准方法的独立医生分类的负案件。多层的感知者神经网络优于其他判别和生成的分类器。因此,所提出的框架产生了总体分类性能,精度为89%,召回88%和89%的精度。本研究成功地应用了学习代表和机器学习算法,以检测单一法国机构中的临床自然语言的心力衰竭。需要进一步的工作来在其他机构和其他语言中使用相同的方法。
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
In intensively managed forests in Europe, where forests are divided into stands of small size and may show heterogeneity within stands, a high spatial resolution (10 - 20 meters) is arguably needed to capture the differences in canopy height. In this work, we developed a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map over the "Landes de Gascogne" forest in France, a large maritime pine plantation of 13,000 km$^2$ with flat terrain and intensive management. This area is characterized by even-aged and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external validation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available at specific locations. We trained seven different U-net models based on a combination of Sentinel-1 and Sentinel-2 bands to evaluate the importance of each instrument in the dominant height retrieval. The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020 with a mean absolute error of 2.02 m on the Test dataset. The best predictions were obtained using all available satellite layers from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region.
translated by 谷歌翻译
Knowledge Distillation (KD) is a commonly used technique for improving the generalization of compact Pre-trained Language Models (PLMs) on downstream tasks. However, such methods impose the additional burden of training a separate teacher model for every new dataset. Alternatively, one may directly work on the improvement of the optimization procedure of the compact model toward better generalization. Recent works observe that the flatness of the local minimum correlates well with better generalization. In this work, we adapt Stochastic Weight Averaging (SWA), a method encouraging convergence to a flatter minimum, to fine-tuning PLMs. We conduct extensive experiments on various NLP tasks (text classification, question answering, and generation) and different model architectures and demonstrate that our adaptation improves the generalization without extra computation cost. Moreover, we observe that this simple optimization technique is able to outperform the state-of-the-art KD methods for compact models.
translated by 谷歌翻译
This work addresses the problems of (a) designing utilization measurements of trained artificial intelligence (AI) models and (b) explaining how training data are encoded in AI models based on those measurements. The problems are motivated by the lack of explainability of AI models in security and safety critical applications, such as the use of AI models for classification of traffic signs in self-driving cars. We approach the problems by introducing theoretical underpinnings of AI model utilization measurement and understanding patterns in utilization-based class encodings of traffic signs at the level of computation graphs (AI models), subgraphs, and graph nodes. Conceptually, utilization is defined at each graph node (computation unit) of an AI model based on the number and distribution of unique outputs in the space of all possible outputs (tensor-states). In this work, utilization measurements are extracted from AI models, which include poisoned and clean AI models. In contrast to clean AI models, the poisoned AI models were trained with traffic sign images containing systematic, physically realizable, traffic sign modifications (i.e., triggers) to change a correct class label to another label in a presence of such a trigger. We analyze class encodings of such clean and poisoned AI models, and conclude with implications for trojan injection and detection.
translated by 谷歌翻译
White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIber gEneration and bundle Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate WM bundles. Our framework allows the transition from one anatomical bundle definition to another with marginal calibrating time. This pipeline is built upon FINTA, CINTA, and GESTA methods that demonstrated how autoencoders can be used successfully for streamline filtering, bundling, and streamline generation in tractography. Our proposed method improves bundling coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase each bundle's spatial coverage while remaining anatomically meaningful. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundling framework
translated by 谷歌翻译
There are many potential benefits to news readers accessing diverse sources. Modern news aggregators do the hard work of organizing the news, offering readers a plethora of source options, but choosing which source to read remains challenging. We propose a new framework to assist readers in identifying source differences and gaining an understanding of news coverage diversity. The framework is based on the generation of Discord Questions: questions with a diverse answer pool, explicitly illustrating source differences. To assemble a prototype of the framework, we focus on two components: (1) discord question generation, the task of generating questions answered differently by sources, for which we propose an automatic scoring method, and create a model that improves performance from current question generation (QG) methods by 5%, (2) answer consolidation, the task of grouping answers to a question that are semantically similar, for which we collect data and repurpose a method that achieves 81% balanced accuracy on our realistic test set. We illustrate the framework's feasibility through a prototype interface. Even though model performance at discord QG still lags human performance by more than 15%, generated questions are judged to be more interesting than factoid questions and can reveal differences in the level of detail, sentiment, and reasoning of sources in news coverage.
translated by 谷歌翻译
In a fissile material, the inherent multiplicity of neutrons born through induced fissions leads to correlations in their detection statistics. The correlations between neutrons can be used to trace back some characteristics of the fissile material. This technique known as neutron noise analysis has applications in nuclear safeguards or waste identification. It provides a non-destructive examination method for an unknown fissile material. This is an example of an inverse problem where the cause is inferred from observations of the consequences. However, neutron correlation measurements are often noisy because of the stochastic nature of the underlying processes. This makes the resolution of the inverse problem more complex since the measurements are strongly dependent on the material characteristics. A minor change in the material properties can lead to very different outputs. Such an inverse problem is said to be ill-posed. For an ill-posed inverse problem the inverse uncertainty quantification is crucial. Indeed, seemingly low noise in the data can lead to strong uncertainties in the estimation of the material properties. Moreover, the analytical framework commonly used to describe neutron correlations relies on strong physical assumptions and is thus inherently biased. This paper addresses dual goals. Firstly, surrogate models are used to improve neutron correlations predictions and quantify the errors on those predictions. Then, the inverse uncertainty quantification is performed to include the impact of measurement error alongside the residual model bias.
translated by 谷歌翻译